The approximation order of four-point interpolatory curve subdivision
نویسنده
چکیده
In this paper we derive an approximation property of four-point interpolatory curve subdivision, based on local cubic polynomial fitting. We show that when the scheme is used to generate a limit curve that interpolates given irregularly spaced points, sampled from a curve in any space dimension with a bounded fourth derivative, and the chosen parameterization is chordal, the accuracy is fourth order as the mesh size goes to zero. In contrast, uniform and centripetal parameterizations yield only second order. Math Subject Classification: 65D05, 65D10
منابع مشابه
The approximation order of 4-point interpolatory curve subdivision
In this paper we derive an approximation property of 4-point interpolatory curve subdivision, based on local cubic polynomial fitting. We show that when the scheme is used to generate a limit curve that interpolates given irregularly spaced points, sampled from a curve in any space dimension with a bounded fourth derivative, and the chosen parameterization is chordal, the accuracy is fourth ord...
متن کاملConvexity preservation of the four-point interpolatory subdivision scheme
In this note we examine the convexity preserving properties of the (linear) fourpoint interpolatory subdivision scheme of Dyn, Gregory and Levin when applied to functional univariate strictly convex data. Conditions on the tension parameter guaranteeing preservation of convexity are derived. These conditions depend on the initial data. The resulting scheme is the four-point scheme with tension ...
متن کاملMatrix-valued 4-point spline and 3-point non-spline interpolatory curve subdivision schemes
The objective of this paper is to study and construct matrix-valued templates for interpolatory curve subdivision. Since our investigation of this problem was motivated by the need of such subdivision stencils as boundary templates for interpolatory surface subdivision, we provide both spline and non-spline templates that are necessarily symmetric, due to the lack of direction-orientation in ca...
متن کاملA piecewise polynomial approach to analyzing interpolatory subdivision
The four-point interpolatory subdivision scheme of Dubuc and its generalizations to irregularly spaced data studied by Warren and by Daubechies, Guskov, and Sweldens are based on fitting cubic polynomials locally. In this paper we analyze the convergence of the scheme by viewing the limit function as the limit of piecewise cubic functions arising from the scheme. This allows us to recover the r...
متن کاملA Controllable Ternary Interpolatory Subdivision Scheme
A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2011